Manipulation of nuclear spins in semiconductor nanostructures

نویسنده

  • Wang Yao
چکیده

A single electron spin localized in III-V semiconductor structure is an attractive candidate for a solid state quantum bit. An outstanding bottleneck towards spin-based quantum computation has been the fast dephasing of the electron spin by the inevitable nuclear spin environment. In this talk, I will discuss preparations of nuclear spin environment using optical and electrical controlled dynamic nuclear spin polarization to substantially increase the electron spin dephasing time. I will also introduce a novel approach to squeeze the nuclear spin bath into many-body singlets, where the deleterious environmental moments are effectively annihilated. The large scale entanglement in many-body singlets may also become a useful resource for nuclear spin based information processing. January 4-5, 2011, Hong Kong

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : c on d - m at / 0 10 22 28 13 F eb 2 00 1 Isotopically engineered silicon / silicon - germanium nanostructures as basic elements for a nuclear spin quantum computer

The idea of quantum computation is the most promising recent developments in the high-tech domain, while experimental realization of a quantum computer poses a formidable challenge. Among the proposed models especially attractive are semiconductor based nuclear spin quantum computer's (S-NSQC), where nuclear spins are used as quantum bistable elements, ''qubits'', coupled to the electron spin a...

متن کامل

Nonequilibrium nuclear polarization and induced hyperfine and dipolar magnetic fields in semiconductor nanostructures

We investigate the dynamic nuclear polarization (DNP) caused by hyperfine coupling between nonequilibrium electronic spins and nuclear spins in semiconductor nanostructures. We derive the time and position dependence of the resulting hyperfine and dipolar magnetic fields. In GaAs quantum wells the induced nuclear spin polarization greatly exceeds the polarization of the electronic system that c...

متن کامل

Coherent manipulation of nuclear spins in the breakdown regime of integer quantum Hall states

We demonstrate a new method for electrical manipulation of nuclear spins utilizing dynamic nuclear polarization induced by quantum Hall effect breakdown. Nuclear spins are polarized and detected through the hyperfine interaction between a nuclear spin system and a two-dimensional electron system located at an interface of GaAs/AlGaAs single heterostructure. Coherent oscillations between the nuc...

متن کامل

Isotopically engineered silicon nanostructures in quantum computation and communication

Natural silicon consists of three stable isotopes with atomic mass 28 (92.21%), 29 (4.70%) and 30 (3.09%). To present day, isotopic enrichment of Si was used in electronics for two goals: (i) fabrication of substrates with high level of doping and homogeneous distribution of impurities and (ii) for fabrication of substrates with enhanced heat conduction which allows further chips miniaturizatio...

متن کامل

Nuclear Spins as Quantum Memory in Semiconductor Nanostructures

We theoretically consider the possibility of using solid state nuclear spins in a semiconductor nanostructure environment as long-lived quantum memory. In particular, we calculate, in the limit of a strong applied magnetic field, the quantum coherence time for P donor nuclear spins in random bath environments of Si and GaAs, and the lifetime of excited intrinsic spins in polarized Si and GaAs e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011